
Augmenting Reinforcement Learning Policies using Human Samples

Ashvin Iyer

Abstract— As the interest and use cases in complex, high-
dimensional robots increase, traditional control methods have
struggled to keep up with these. As a result, learning-based
solutions have become common to overcome this hurdle. Re-
inforcement Learning aims to set up the task in a simulated
environment, and learn an optimal policy through trial and
error. Imitation Learning uses human-curated motion samples
for a robot to learn, imitating human behavior. Both methods
have their merits and issues, and recent papers look to combine
both methods. I look to implement and improve some existing
methods that aim to utilize the strengths of both Reinforcement
and Imitation Learning.

I. INTRODUCTION

Over the last few years, there has been a growing inter-
est in utilizing high-dimensional robotics to perform com-
plex tasks: robot manipulators for precise surgical tasks,
quadrupeds for exploration of difficult terrain, humanoids for
autonomous manufacturing, and more.

In traditional robotics, model-based approaches are used to
design closed-loop feedback systems and are often achieved
using trajectory optimization [1]. Alternatively, some ap-
proaches plan in latent space (using graph [2] or sampling-
based planning [3]) and utilize inverse kinematics [4] to
convert between latent space and control space. Both of these
methods rely on rigorous system identification and hand-
tuned controllers and often fail to generalize in complex and
nuanced environments.

With the recent boom of Machine Learning over the last
decade, several learning-based solutions have been proposed
for complex robot planning; namely, Imitation Learning and
Reinforcement Learning.

Imitation Learning [5] is an increasingly popular solution
for robot manipulation tasks. Imitation Learning learns by
taking in examples of expert trajectories and learns to mimic
similar behavior. Samples for Imitation Learning are usually
collected through recording human tele-operation of the
given task, and converting them into state-action pairs for
learning. Imitation Learning is often done through Inverse
Reinforcement Learning (IRL) [6] or Behavior Cloning (BC)
[7]. Inverse Reinforcement Learning. Inverse Reinforcement
Learning attempts to learn a reward function from expert
samples and then trains a policy using the learned function.
Behavior Cloning instead learns a state-action pair mapping
directly, using some neural network architecture. Imitation
Learning has great success on scenarios very similar to those
in the examples but can struggle to generalize beyond that.
Although this can be solved with a large and robust dataset,
that may not be feasible for some applications.

Reinforcement Learning [8] works by learning a motion
policy through a hand-engineered reward function. A robot

Fig. 1. Curve demonstrating tradeoffs of IL and RL from [10]

simulation environment is used to generate state-action tra-
jectories, and the policy learns the positive and negative
actions through feedback from the reward function. Deep-
reinforcement learning with a well-defined reward function
can generalize incredibly well; however, it is challenging
to define an effective reward. RL often gets stuck in local
minima or does not converge at all, depending on the
complexity of the task and the definition of the reward.
There is also the challenge of Sim2Real [9], where the policy
learned in a simulated environment may not be feasible in
the real world due to noise or safety factors. In such cases,
it may be useful to follow a human-like trajectory, which is
usually done through IL.

This paper aims to integrate Imitation and Reinforcement
Learning to As demonstrated in Fig. 1, I want to utilize
Imitation Learning to get peak performance when samples
are available, but still get the benefits of RL, which is more
generalizable. By combining both methods, I hope to achieve
the following:

1) (Quickly) Converged Policy: Utilizing samples can
help guide RL exploration in the correct direction, finding
global optima.

2) Generalized Policy: RL will be able to generalize
behavior in all configurations through repeated trial-and-
error.

3) Human-Like Policy: Guiding RL using human samples
will help the policy to converge to human-like weights, rather
than some other solution.

II. RELATED WORK

Several methods exist on augmenting RL with other
approaches to improve sample efficiency and promote
the search for global optima. Some approaches integrate
sampling-based methods, such as RRT* [11] or PRM [12]
into RL methods. These methods improve the sample effi-
ciency of RL by enabling RL to sample in random tree’s la-
tent space, and handling conversion to control space through
classical planning and kinematics.

Constrained Policy Optimization [13] enables configuring
constraints in the RL problem directly, preventing the policy
from taking invalid action and reducing the search size.

There also exist methods that look to combine ex-
pert demonstrations with Reinforcement Learning. Deep Q-
Learning from Demonstrations (DqfD) [14] initializes a TD-
policy by pretraining the network weights with behavior
cloning. This helps guide the training of the RL policy
towards the expert behavior, and the remaining exploration
helps generalize the policy.

Demo-Augmented Policy Gradient (DAPG) [15] also inte-
grates the Natural Policy Gradient (NPG) [16] algorithm with
Behavior Cloning. They pre-train their policy with Behavior
Cloning, similarly to DqfD. However, they also integrate BC
loss into their optimization function directly, which ensures
a human-like behavior for their policy.

LOKI [17] also uses policy gradients, but alternates
between using an imitation gradient and a reinforcement
learning gradient to learn an effective policy. This method
focuses more on helping RL policies converge and does not
necessarily guarantee behavior similar to the examples.

Nuro takes a different approach with CIMRL [18], which
modifies Recovery-RL [19] to take a discrete number of
trajectories and output a score for each one. For their specific
case, they utilized Imitation Learning to generate the inputs
for Reinforcement Learning, but theoretically any trajectory
could be inputted.

Waymo [10] proposes combining Behavior Cloning with
Reinforcement Learning by integrating a BC [20] loss func-
tion into a SAC [21] actor loss. The following methods will
go into more detail about BC-SAC, as well as modifications
to improve this method.

III. METHODS

In the Methods below, I will look at a Soft Actor-Critic
[21] family of methods for combining reinforcement learning
with human samples. Although there are several techniques
for using RL in robotics applications, I chose to look at
specifically SAC models because of its great performance in
complex, continuous environments, which are common for
robotics applications.

Specifically, the performance of SAC and BC will be
individually evaluated against BC-SAC [10], in addition to
other novel modifications introduced in this project.

A. Soft Actor-Critic

Soft Actor-Critic (SAC) is a state-of-the-art off-policy
method for training reinforcement learning tasks. SAC works
by simultaneously training an Actor and Critic network. The
actor network is designed to learn the policy at hand, and
the critic network learns how to effectively evaluate the actor,
using the reward function for the environment.

The objective function of the critic is defined as the
following

min
Q

Es,a,s′∼π[(Q(s, a)− Q̂(s, a, s′))2]

Q̂ is the target value of the critic Q, and the critic learns to
minimize this error. The target value is defined as

Q̂(s, a, s′) = r(s, a) + γEa′∼π[Q(s′, a′)− log π(a′|s′)]

This target is essentially the reward for a specific state action
pair, plus the expected value of all possible results of the
future step as well.

The actor network has the simple objective of maximizing
the following

max
A

Es,a∼π[Q(s, a) +H(·|s)]

The goal is to maximize the Q value from the critic, with
an additional H term, which maximizes the entropy of the
SAC. The output of the actor is an action distribution, rather
than a singular action. When sampling during exploration,
the action taken is chosen from the distribution the policy
provides, which promotes exploration. The goal of the term
H is to increase the variance of the distribution to promote
exploration. During inference, the expected value of the
distribution is used as the model’s output.

The high sample efficiency and improved exploration
make SAC ideal for integrating with human samples, as the
model needs to perform exploration to be able to generalize
effectively. However, SAC is generally noisy and difficult to
train efficiently. With expert demonstrations to help guide
the SAC, it can avoid local-minima traps and quickly find
the generally optimal search space. Here, SAC’s efficient
exploration can help fine-tune the policy to improve results.

B. Behavior Cloning

Behavior Cloning is a specific method of Imitation Learn-
ing, where the policy learns a mapping between states and
actions via supervised learning. Specifically, given a set of
state-action pairs D = {(s0, a0), (s1, a1), ...}, the objective
function is maximized as

Es,a∼D[log π(a|s)]

Here, the goal is to maximize the probability that expert
actions are taken given the expert states. This can be accom-
plished using any standard Neural Network Architecture.

Behavior Cloning can often struggle to generalize, espe-
cially to complex tasks, due to the simple nature of how the
method is trained. The direct mapping from state to action
prevents the model from performing long-term planning,
meaning that the policy cannot recover from any mistakes.
Other methods such as Direct Policy Learning or Inverse-RL
can be more effective but also require a much more complex
setup. Instead, RL can be used to integrate imitation in a
simpler and smarter way.

C. Behavior Cloning Soft Actor-Critic

Behavior Cloning Soft Actor-Critic (BC-SAC) [10] com-
bines expert demonstrations with the SAC architecture to
improve performance. Specifically, they modify the actor
objective function to the following

max
A

Es,a∼π[Q(s, a) +H(·|s)] + λEs,a∼D[log π(a|s)]

Fig. 2. Figure demonstrating when IL and RL error is used for BC-SAC
[10]

Within the actor itself, a behavior cloning objective is added
by evaluating how likely the current policy is to perform
actions similar to the human samples (The distribution D).
The λ term is a scaling factor that determines how much to
weight the RL error versus the IL error, and can be tuned as
needed.

The goal of the authors is to utilize behavior cloning loss
to improve trajectories within the distribution D, but to still
obtain adequate performance in out-of-distribution (OOD)
regions through RL loss. They expect the OOD performance
to be similar to that of a normal RL (as shown in Fig. 2), as
the BC error will be large regardless of an OOD scenario.

D. Discounted Behavior Cloning Soft Actor-Critic

Discounted Behavior Cloning Soft Actor-Critic (DBC-
SAC) is a modification to BC-SAC introduced in this project.
Specifically, one small but crucial change is introduced to the
actor objective function

max
A

Es,a∼π[Q(s, a) +H(·|s)] + λ0α
nEs,a∼D[log π(a|s)]

Instead of using a constant λ to balance the importance be-
tween RL and IL loss, λ becomes an exponentially decaying
function. The function starts with some initial λ0, and has
an exponential decay factor of α ∈ [0, 1] (n is the number
of iterations carried out in training so far).

Using standard BC-SAC, the value of λ is very important,
as it determines if you under or over-fit to the expert samples.
However, the desired behavior is to allow RL to freely ex-
plore around the IL distribution, which will allow the policy
to generalize effectively. With BC-SAC, a balance between
RL and IL is utilized, but the behavior explained above is
not actually achieved. By using a decaying function, the actor
initially mimics the IL policy and over time promotes the RL
loss to modify the policy around the IL distribution.

E. Self-Imitation Demonstrations

Self-Imitation Learning (SIL) [22] is a method that
helps improve Reinforcement Learning Policies. The method
works by taking the best outputs of a SAC model, and
inputting them into a separate replay buffer that is used
to perform periodic offline training. This helps the model
learn from good results more often and converge to a better
solution faster.

Self-Imitation Demonstrations (SID) is a method that
takes inspiration from SIL, but is compatible with BC-SAC.
Similarly to SIL, SID utilizes the good policy outputs to help

enhance the final policy. However, these outputs are added
to the distribution D of expert samples, rather than running
offline training with them. Since the outputs of the policy
will cover some OOD scenarios, adding them to the expert
distribution can improve the coverage provided for the IL
error, leading to an overall more positive result.

1) Imitation Learning Demonstrations: Imitation Learn-
ing Demonstrations (ILD) is very similar to SIDs, but rather
than using the same model, the extra demonstrations are
generated directly from some IL model. This may help the
policy to behave more closely to the expert demonstrations
itself.

F. Demo Augmented Soft Actor-Critic

Demo Augmented Soft Actor-Critic (DA-SAC) is another
new method introduced in this project and takes inspiration
from SIL. The core idea of periodically using good examples
to promote learning positive rewards remains the same.
However, instead of utilizing previously run examples, the
expert demonstrations are added to the replay buffer, to
periodically re-align the policy with the imitation objective.
Details of this are shown in Algorithm 1.

Algorithm 1 DA-SAC: Modified SAC [21] implementation
1: procedure DA-SAC
2: R← {}
3: Rd ← {} ▷ Demo Replay Buffer
4: for each trajectory T ∈ D do
5: for each timestep t ∈ T do
6: Rd ← Rd ∪ {st, at, rt, st+1}
7: end for
8: end for
9: for t ∈ [0, n] do

10: at ← π(st)
11: st+1, rt+1 ← Env(at)
12: R← R ∪ {st, at, rt, st+1}
13: d←∼ R ▷ Sample from Replay Buffer
14: sac.update(d)
15: if t mod f = 0 then ▷ Demo Frequency
16: d←∼ Rd

17: sac.update(d)
18: end if
19: end for
20: end procedure

IV. EXPERIMENTS

A. Experiment Setup

All the methods explained above are tested using the
Hand Manipulation Suite from RoboHive [23], which utilizes
Mujoco [24] as the backend simulator. Specifically, all the
models are trained on the door − v1 task, which a high-dof
robot arm opening a door, as shown in Fig. 3.

The state space comprises the position of the hand, the
angles of the joints and the position of the doors / angles
in R38. The action space consists of the torque inputs

Fig. 3. Environment from Hand Manipulation Suite from Robohive. [23]

for each joint / position of the robot hand in R28. The
mujoco simulation handles all the physics of progressing
between states. The suite also provides a set of 75 human
demonstrations that will be used to integrate IL into models.

A default reward function is provided. All the experiments
below are trained using this default reward function, as the
goal is to test how well each of these models perform
generally, rather than attempting to fine-tune the reward. The
reward function is defined as:

R = α1Re+ α2O + α3B

Re defines the distance between the hand and the handle,
O defines how close the handle is to being open (angular
squared distance from 90◦), and B sets individual rewards
for reaching certain angle thresholds. By default α1 = α2 =
−0.1, α3 = 1.

Re = ||phand − phandle||2

O = (θdoor − 90◦)2

B =

0 if θdoor < t1
b1 if t1 ≤ θdoor < t2
... ...∑n−1

i=1 bi if tn−1 ≤ θdoor < tn∑n
i=1 bi if tn ≤ θdoor

The reward for reacing certain goals is cumulative (get
rewards for all previous goals as well). By default, the values
of b and t are b = [2, 8, 10] and t = [0.2, 1, 1.35] (rad).

B. Model Implementation

All the methods are trained using some variation of a
SAC. To implement this, I utilized an existing pytorch SAC
implementation [25] that uses a Double-Q Critic with Multi-
layer Perceptions and a Diagonal Gaussian Actor, and made
necessary modifications to train all the models. For training
details, the following configuration was used:

• Actor Model Dimensions: 38×1024×1024×56 (output
mean and variance)

• Critic Model Dimensions: 66× 1024× 1024× 1
• Learning Rate: 1−5

• Discount: 0.99
• Seed Steps: 10000
• Training Steps: 100000

C. Models

The following models are trained and tested:
1) SAC Baseline: A traditional SAC without any BC

integration trained as a baseline comparison.
2) BC Baseline: Similarly to SAC, a BC model without

any RL is trained as another baseline comparison.
3) BC-SAC λ Variation: Various BC-SAC models are

trained to observe the impact of λ. The values of λ =
0.1, 1, 10 are used.

4) DBC-SAC: A DBC-SAC model with λ0 = 1 and
α = 0.999 is trained to compare to BC-SAC and see
improvements.

5) ILD: ILDs are added to both BC-SAC and DBC-
SAC to observe improvements. The IL policy for generating
experts is the same BC model trained for comparison.

6) SID: SIDs are added to BC-SAC and DBC-SAC to
observe improvements.

7) DA-SAC: DA-SAC model is trained with a frequency
of 0.5hz (every other iteration).

D. Metrics

Each model is run over 1000 different variations of the
same door-opening environment. From this, the following
metrics are computed:

1) Average Reward: : Gives a general idea of how well
the task is performed

2) Average Door Angle: : Gives an understanding of how
well the door is opened. Two averages are computed: 1 across
all samples and 1 across only samples where the door was
successfully opened.

3) Door Opening Angles: : The percentages of reaching
certain angle thresholds are also computed. There is a
threshold for being able to open the door at all, in addition
to the 3 angles specified in the reward function (0.2, 1, 1.35
rad or 11.5◦, 57.3◦, 77.3◦).

E. Results

All the numerical metrics can be found in Table I and
Table II. Overall, the results show that while SAC and BC
struggle on their own to obtain good solutions, combining
both is very effective in getting a more generalized and
effective policy.

1) SAC Performance: SAC struggled a lot to converge to
a good solution. Without any guidance from expert samples,
the SAC model learned d to open the door using the dorsum
(back of the hand), rather than grabbing the handle with the
fingers (as seen in Fig. 4). Sometimes, it would get lucky
and pull the door slightly open despite this technique, but
this is mostly due to artifacts of the simulation and would
likely not work in the real world.

TABLE I
EVALUATION OF AVERAGE REWARD AND AVERAGE ANGLE FOR EACH MODEL

Model Average Reward Average Door Angle◦ (w/ failures) Average Door Angle◦ (w/o failures)

SAC 4.1 2.2◦ 12.3◦

BC 461 41.1◦ 55.9◦

BC-SAC (λ = 0.1) 65.3 7.9◦ 51.1◦

BC-SAC (λ = 1) 955.8 83.1◦ 84◦

BC-SAC (λ = 10) 868.8 77.7◦ 81.3◦

DBC-SAC (λ = 1, α = 0.999) 966.7 86.4◦ 86.5◦

SID-BC-SAC (λ = 1) 910.7 82◦ 82.7◦

SID-DBC-SAC (λ = 1, α = 0.999) 966.8 86.7◦ 86.7◦

ILD-BC-SAC (λ = 1) 704.5 62.1◦ 62.3◦

ILD-DBC-SAC (λ = 1, α = 0.999) 614 54.3◦ 56.2◦

DA-SAC 46 5.2◦ 11◦

TABLE II
EVALUATION OF DOOR OPENING ANGLE FREQUENCY FOR EACH MODEL

Model (Door Angle > 0)% (Door Angle > 0.2)% (Door Angle > 1)% (Door Angle > 1.35)%

SAC 18.2% 4.9% 1% 0.2%

BC 73.6% 64.8% 34.9% 27.6%

BC-SAC (λ = 0.1) 15.5% 11.8% 10.1% 0%
BC-SAC (λ = 1) 98.9% 97.5% 92.5% 83.9%

BC-SAC (λ = 10) 95.6% 93.8% 88.1% 78%

DBC-SAC (λ = 1, α = 0.999) 99.9% 99.3% 98.2% 94.8%

SID-BC-SAC (λ = 1) 99.1% 99% 98.2% 93.5%
SID-DBC-SAC (λ = 1, α = 0.999) 100% 100% 99.9% 97.1%

ILD-BC-SAC (λ = 1) 96.6% 95.1% 42.5% 36.1%
ILD-DBC-SAC (λ = 1, α = 0.999) 99.7% 96.2% 55.5% 42%

DA-SAC 47.9% 11.7% 0.8% 0%

Fig. 4. SAC approaching door using dorsum

This performance is due to the reward function giving a
small reward for coming close to the handle, and the SAC
model learned that this is the easiest way to approach the
handle. Without any guidance from samples, the SAC failed
to find the global optima and instead converged to a local
minima. The large search space makes it nearly impossible
for SAC to find the global optima without any guidance.

2) BC Performance: BC definitely performed better than
SAC and is able to open with better success. However, the
BC model would often release the door handle too early,
preventing the model from fully opening the door, which
can be observed in the metrics. Sometimes, it would swipe
at the door and completely miss the handle.

The BC model struggles to learn actions on a longer
horizon, as there is a larger space of actions to learn from due
to accumulating errors. Furthermore, since BC does not have
any long-term planning, it would behave erratically once
there was enough deviation from the distribution, preventing
it from consistently swinging the door open.

3) BC-SAC Performance: BC-SAC showed very promis-
ing results. With the right values of λ, BC-SAC is able to
fully open the door in 83% of the time, much better than the
performance of BC or SAC individually.

With λ = 0.1, there was not enough emphasis on BC loss,
so it still struggled to converge. It learned the same grasping
motion as BC but simply attempted to make contact with the
handle, rather than actually trying to grab it.

With λ = 1, BC-SAC performed quite well. It would
usually open the door successfully once it grabbed the door
handle properly. However, it would sometimes fail to grab
with good contact to maintain strong hold. This is likely due

Fig. 5. BC missing handle when grabbing

Fig. 6. BC-SAC (λ = 0.1) grasping and making contact, not grabbing

to BC-SAC trying to balance grasping (from BC loss) with
approaching the door handle (RL loss), and the end result is
not the best hold on the door.

With λ = 10, there was too much emphasis on the BC
component, which caused the model to let go of the handle
at times, similar to what the BC model itself did. However,
it still performed fairly well.

Overall, BC-SAC is quite effective in balancing RL re-
wards with IL loss to obtain a globally optimal policy.
However, this policy still has some struggle to generalize
to all scenarios. Although it is possible to potentially find
the perfect value of λ to reach convergence, that is a tedious
process. The methods below will help address this without
requiring fine hyper-parameter tuning.

4) DBC-SAC performance: DBC-SAC performed simi-
larly to BC-SAC but was generally more consistent in its
performance. It did not get stuck as often as BC-SAC due
to bad grasping of the door handles. DBC-SAC learned all
the steps of grasping and opening the door: Grab the handle
and the correct location, turn the handle 90◦, pull in an arc,
and do not let go.

Since DBC-SAC increases the importance of RL explo-
ration over time, it was able to generalize better than BC-
SAC. While BC-SAC looks to find a balance between RL
reward and BC loss, it always looks for the same middle

Fig. 7. BC-SAC (λ = 1) stuck due to bad grab angle

Fig. 8. BC-SAC (λ = 10) grabbing door knob instead of handle

ground, rather than allowing for the best exploration. DBC-
SAC allows RL to fully explore the distribution around BC
over enough time, allowing it to learn the subtlety of how to
properly grasp the handle.

5) ILD performance: Adding ILDs to both BC-SAC and
DBC-SAC actually decreased the performance of both mod-
els. ILDs resulted in similar performance in getting the door
to open, but performance significantly dropped in actually
swinging the door fully open. This is consistent with the
original BC model, which also struggled to get the door fully
open.

This is likely because the original BC model from which
the examples were extracted does not have generalized
performance to begin with. Although examples with good
rewards were extracted, they may have used a technique that
is not consistent or optimal for actually opening the door.
This is because BC does not have any long-term planning,
so it was only able to open the door to those specific
configurations.

6) SID performance: In contrast to the performance of
the ILD, the SID helped improve the overall consistency of
both models, especially in helping the door fully open.

The general behavior and strategy of both models re-
mained similar, but the extra data helped the BC loss cover
a larger amount of the distribution, which in turn gave a

Fig. 9. DBC-SAC effectively grabbing handle and pulling

Fig. 10. DA-SAC opening door from left

more generalized model. Specifically, SID especially helped
improve the long-term planning needed to fully swing the
door open, as more samples helped guide the loss to the true
global optima faster.

SID-DBC-SAC perfromed especially well, being the only
model that actually opened the door 100% of the time and
fully opened the door 97. 1% of the time.

7) DA-SAC performance: DA-SAC developed a rather
unusual strategy: It learned to pull the door handle down
to unlock the door, but would then choose to let go and
pull the door from the left (as seen in Fig. 10). Although the
model had some success in opening the door, it was unable to
properly swing the door open with this sub-optimal strategy.

It appears that the model learned the first initial aspect of
unlocking the door from the BC samples, but was unable
to actually converge to the correct solution, and found its
own local minima it got stuck in. It is possible that with a
smarter method for injecting demonstrations and a different
frequency, this issue would not occur.

V. CONCLUSION

In conclusion, the integration of Reinforcement Learning
with human expert demonstrations helped massively improve
the performance of the models. Compared to pure Rein-
forcement Learning, the family of BC-SAC models avoided
getting stuck in local minima and quickly converged to the

optimal solution. Furthermore, they retained a human-like
policy from the given demonstrations while also generalizing
much better than a pure BC policy.

The integration of BC loss into the actor objective func-
tion, initially proposed by Waymo [10], has been shown to
be extremely effective in combining IL and RL. Further-
more, in Discounting λ and Self-Imitation Demonstrations,
I introduced two additions that help further improve the
performance of their method to generalize better.

In the future, I would be interested to see how Sim2Real
transfer of such models would work. Although the BC-SAC
policies are definitely better in simulation, they have not
been subjected to real world noise, and may struggle with
such cases. I also think trying different decay functions for
λ could be useful. Exponential decay was a simple and
effective method, but other functions may have properties
that allow for even better performance. Lastly, I would
be interested in further researching DA-SAC and trying
to integrate demonstrations in a smarter manner that more
closely resembles the SIL paper [22].

REFERENCES

[1] K. M. Lynch and M. T. Mason, “Dynamic nonprehensile manipulation:
Controllability, planning, and experiments,” The International Journal
of Robotics Research, vol. 18, no. 1, pp. 64–92, 1999. [Online].
Available: https://doi.org/10.1177/027836499901800105

[2] M. Gillepsi, L. Davis, S. Jones, and A. Choudhary, “Review of graph-
based motion planning algorithms,” 08 2024.

[3] L. Zhang, K. Cai, Z. Sun, Z. Bing, C. Wang, L. Figueredo,
S. Haddadin, and A. Knoll, “Motion planning for robotics: A
review for sampling-based planners,” 2024. [Online]. Available:
https://arxiv.org/abs/2410.19414

[4] A. Aristidou and J. Lasenby, “Inverse kinematics: a review of existing
techniques and introduction of a new fast iterative solver,” 09 2009.

[5] S. Adams, T. Cody, and P. A. Beling, “A survey of inverse reinforce-
ment learning,” Artificial Intelligence Review, vol. 55, no. 6, pp. 4307–
4346, 2022.

[6] S. Arora and P. Doshi, “A survey of inverse reinforcement learning:
Challenges, methods and progress,” 2020. [Online]. Available:
https://arxiv.org/abs/1806.06877

[7] F. Torabi, G. Warnell, and P. Stone, “Behavioral cloning from obser-
vation,” 2018. [Online]. Available: https://arxiv.org/abs/1805.01954

[8] C. Tang, B. Abbatematteo, J. Hu, R. Chandra, R. Martı́n-
Martı́n, and P. Stone, “Deep reinforcement learning for robotics:
A survey of real-world successes,” 2024. [Online]. Available:
https://arxiv.org/abs/2408.03539

[9] M. Kaspar, J. D. M. Osorio, and J. Bock, “Sim2real transfer
for reinforcement learning without dynamics randomization,” 2020.
[Online]. Available: https://arxiv.org/abs/2002.11635

[10] Y. Lu, J. Fu, G. Tucker, X. Pan, E. Bronstein, B. Roelofs, B. Sapp,
B. White, A. Faust, S. Whiteson et al., “Imitation is not enough:
Robustifying imitation with reinforcement learning for challenging
driving scenarios,” arXiv preprint arXiv:2212.11419, 2022.

[11] G. Khandate, S. Shang, E. T. Chang, T. L. Saidi, Y. Liu, S. M.
Dennis, J. Adams, and M. Ciocarlie, “Sampling-based exploration for
reinforcement learning of dexterous manipulation,” 2023.

[12] D. Lawson and A. H. Qureshi, “Control transformer: Robot naviga-
tion in unknown environments through prm-guided return-conditioned
sequence modeling,” arXiv preprint arXiv:2211.06407, 2022.

[13] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy opti-
mization,” 2017. [Online]. Available: https://arxiv.org/abs/1705.10528

[14] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot,
D. Horgan, J. Quan, A. Sendonaris, G. Dulac-Arnold, I. Osband,
J. Agapiou, J. Z. Leibo, and A. Gruslys, “Deep q-learning from
demonstrations,” 2017.

[15] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and
P. Abbeel, “Overcoming exploration in reinforcement learning with
demonstrations,” 2018 IEEE International Conference on Robotics
and Automation (ICRA), pp. 6292–6299, 2017. [Online]. Available:
https://api.semanticscholar.org/CorpusID:3543784

[16] S. M. Kakade, “A natural policy gradient,” in Neural
Information Processing Systems, 2001. [Online]. Available:
https://api.semanticscholar.org/CorpusID:14540458

[17] C.-A. Cheng, X. Yan, N. Wagener, and B. Boots, “Fast policy
learning through imitation and reinforcement,” 2018. [Online].
Available: https://arxiv.org/abs/1805.10413

[18] J. Booher, K. Rohanimanesh, J. Xu, V. Isenbaev, A. Balakrishna,
I. Gupta, W. Liu, and A. Petiushko, “Cimrl: Combining imitation and
reinforcement learning for safe autonomous driving,” 2024. [Online].
Available: https://arxiv.org/abs/2406.08878

[19] B. Thananjeyan, A. Balakrishna, S. Nair, M. Luo, K. Srinivasan,
M. Hwang, J. E. Gonzalez, J. Ibarz, C. Finn, and K. Goldberg,
“Recovery rl: Safe reinforcement learning with learned recovery
zones,” 2021. [Online]. Available: https://arxiv.org/abs/2010.15920

[20] S. Ross, G. J. Gordon, and J. A. Bagnell, “A reduction of imitation
learning and structured prediction to no-regret online learning,” 2011.

[21] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with
a stochastic actor,” CoRR, vol. abs/1801.01290, 2018. [Online].
Available: http://arxiv.org/abs/1801.01290

[22] J. Oh, Y. Guo, S. Singh, and H. Lee, “Self-imitation learning,” 2018.
[Online]. Available: https://arxiv.org/abs/1806.05635

[23] “Robohive – a unified framework for robot learning,”
https://sites.google.com/view/robohive, 2020. [Online]. Available:
https://sites.google.com/view/robohive

[24] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2012, pp. 5026–5033.

[25] D. Yarats and I. Kostrikov, “Soft actor-critic (sac) implementation in
pytorch,” https://github.com/denisyarats/pytorchsac, 2020.

